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EXECUTIVE SUMMARY  

The I-94 Connected Vehicles (CV) Testbed was funded by the Roadway Safety Institute (RSI) to expand 

and upgrade the Minnesota Traffic Observatory’s (MTO) previously existing I-94 Field Laboratory. RSI 

and Minnesota Department of Transportation (MnDOT) projects have covered most of the expenses of 

monitoring and maintenance, but due to the permanent placement of the lab, there are periods of time 

when no project utilizes it, and ongoing costs must be taken care of. This project allowed for the 

continuous operation and maintenance of the CV Testbed and I-94 Field Lab, both of which have many 

pieces of technology requiring ongoing monitoring and maintenance. The project also allowed for 

changes in the placement of the field lab due to the I-94/I-35W construction project that began in April 

2018, as well as technology upgrades, like adding Wavetronix sensors to MTO stations. 

The CV testbed is state-of-the-art, fully functional, and uniquely situated to attract freeway safety-

oriented vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) safety application development, 

implementation, and evaluation projects going forward. Specific projects like Queue Warning and Speed 

Harmonization will be implemented and tested on the corridor. The previous Field Lab was enhanced to 

support fully developed CV safety systems as well as the research and evaluation of the underlying 

human factors of such systems and the enhanced system has been in operation since March 2017. 

In addition to the positioning of the Field Lab stations, maintenance, and upgrades, more sophisticated 

database visualization tools were developed during this project. These tools will be used to visualize and 

extract real-world vehicle trajectories from the sensor data.   

Overall, the CV Testbed is unique from other CV pilot sites in that it operates on a fully functioning, high-

volume freeway. It is not isolated or under fully controlled conditions. It is a step closer to what CVs 

entering the marketplace will be like. Given the unique nature of the system deployed in a real-world 

setting, any CV applications requiring interaction with a large number of unconnected vehicles could be 

tested in this facility, which is an important stepping stone for research as CVs start to enter the 

marketplace. 
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CHAPTER 1:   INTRODUCTION 

Safety and traffic operations concepts based on vehicle-to-vehicle (V2V) and vehicle-to-infrastructure 

(V2I) communication have been in development for some time. Since 2003, with the assistance of the 

Minnesota Department of Transportation (MnDOT), the Minnesota Traffic Observatory (MTO) at the 

University of Minnesota has studied and experimented with infrastructure-based Queue Warning (Q-

WARN) systems. A permanent field lab has been established at the high-crash area of westbound I-94 in 

Minneapolis, Minnesota, capturing detailed data on hundreds of crashes. This area experiences upward 

of 100 crashes annually, most of them rear-end crashes due to failure to stop or too little headway.  

The Roadway Safety Institute (RSI) funded the creation of the I-94 Connected Vehicles Testbed as an 

addition to the existing I-94 Field Laboratory of the MTO. This project aims to expand and maintain both 

the already extensive instrumentation available at the I-94 Field Lab, as well as the Connected Vehicles 

(CV) Testbed specifically for the implementation and testing of Speed Harmonization (SPD-HARM) and 

Q-WARN systems. The current site was enhanced to support fully developed CV safety systems as well 

as the research and evaluation of the underlying human factors of such systems and began operation in 

March 2017. 

Both the continuous operation of the I-94 Field Lab and now the CV Testbed involves many layers of 

technology that require constant monitoring and frequent maintenance. While most of such expenses 

have been covered by Roadway Safety Institute (RSI) and MnDOT projects, there are costs that are 

ongoing and periods when no projects are utilizing the Testbed infrastructure. The funding provided for 

this project allowed the uninterrupted operation of the Testbed, as well as changes and upgrades in 

view of the large reconstruction project MnDOT began in April 2018. 

1.1 ORIGINAL I-94 CV TESTBED PROJECT AND ISSUES 

The final goal of both the original I-94 CV Testbed project, along with this operations and maintenance 

period, is a fully functional CV testbed uniquely situated to attract freeway safety-oriented V2I and V2V 

safety application development, implementation, and evaluation projects. 

The Testbed upgrade to MTO’s existing I-94 field laboratory’s surveillance and data collection 

infrastructure introduced the ability of collecting detailed vehicle trajectories from seven 24 GHz radar 

covering the I-94 WB high-crash frequency area in downtown Minneapolis. The radar infrastructure was 

complimented by a database system that collects the vehicle trajectories in real-time, stores them and 

makes them available to any external applications through a provided Application Program Interface 

(API). Developing the CV Testbed to provide such information from a busy and difficult to access freeway 

was challenging and required many customized hardware and software solutions. For example, due to 

the lack of power in two of the locations where radar was needed to provide seamless trajectories, MTO 

engineers designed and assembled a solar-powered solution mounted on temporary wooden poles.  



 

2 

 

Although the original plan was to deploy overlapping radar sensors on a half-mile stretch of I-94, it 

became clear following several meetings and discussions with MnDOT that it would not allow the MTO 

project team to install the sensors on a temporary basis and that it required a secure permanent 

deployment specifically in terms of the power line conduits. The original project, as budgeted, did not 

have the funds to complete such deployments. Instead, the project as much as possible used the 

existing available MnDOT camera poles, even if their location limited coverage and in some cases 

accuracy of the sensors. At this point in the project’s lifespan, the priority was to establish the backbone 

of the sensor communication network and data collection system.  

In addition to the aforementioned issues with the radar station deployment, an additional problem 

involving the radar was encountered. The project had proposed using the latest generation of radar 

sensors, which provide higher performance and accuracy in heavy traffic sites like I-94. The proposal was 

developed following several reassurances from the manufacturer that these latest models would be 

available in the United States shortly after the start of the project. The original project officially started 

in November 2014, and the agreement was that we would purchase the latest generation; until they 

could be sold in the United States, MTO would receive the older generation for testing and deployment 

in the field lab. In February 2015, after considerable pressure, the manufacturer revealed that it did not 

anticipate making the sensors available until February 2016 because the matter was being litigated in 

U.S. courts. Given this reality, the project team decided to proceed with the older generation sensors, 

develop and deploy the system, identify where the older generation sensors were insufficient and by 

how much, and plan for a later upgrade to the better radar sensors when they became available. 

The full system has been in operation since March 2017 and has already provided millions of vehicle 

trajectories, along with video and conventional sensor information. Given the custom-made nature of 

the whole system, it requires constant monitoring and relatively frequent maintenance, which can be 

costly since two of the sensor locations are only accessible by bucket truck. The MTO is continuing the 

development of the data collection and storage system as well as the development of data processing 

applications to clean, verify, and stitch together the raw vehicle trajectories.  

1.1.1  Planned Project Maintenance and Effort  

It is essential to maintain the current CV Testbed as well as keep it at the cutting edge of technology to 

succeed in attracting research projects using the available data. This extension project will cover the 

following efforts and expenses: 

1. Cost of renting the I-94 lab rooftop stations that form the communication backbone of the 

whole system. 

2. Effort for the ongoing monitoring of the system operation and the ongoing collection of video 

and sensor data. 

3. Updates to the presentations and CV Testbed status material delivered as part of the final 

report. 

4. Hardware replacement costs for current components of the CV Testbed.  
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5. Maintenance of current software infrastructure to ensure system security.  

6. Continue the development of the system API that allows external applications to utilize the 

Testbed sensors.  

7. Continue the development of data filtering and data mining applications that improve the 

quality of the raw collected vehicle trajectories. 

8. Relocate one of the solar stations to a new location probably upstream of the 11th Street 

overpass.  

9. Expansion of sensing, surveillance, and communication abilities along the testbed.  

This report will cover each of the efforts categorized by hardware and software upgrades and 

maintenance.  
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CHAPTER 2:   HARDWARE UPGRADES AND MAINTENANCE 

To ensure the CV Testbed remained fully operational, regular monitoring of the hardware’s status 

occurred. In addition to maintenance performed, stations were relocated due to construction. Also, 

expanding on the original project, Wavetronix radars were added to several locations to improve data 

collection resolution.  

2.1 HARDWARE REPLACEMENT COSTS 

Given the year-round operation of the laboratory, most of the Testbed hardware is exposed to extreme 

temperatures, hot and cold, as well as pollution from the 150,000 vehicles traveling on I-94 daily. From 

September 2017 to August of 2018, the stations were inspected and refurbished as required due to 

wear and tear. Common things needing to be fixed were power wiring, communication issues, and 

structural and mounting elements. On the solar stations, batteries were replaced, and the solar panels 

were checked for damage and grime. The solar units presented no trouble except when covered in snow 

for extended periods of time or becoming too cold to function properly, as is sometimes the case with 

Minnesota winters. 

2.2 STATION RELOCATION 

The original Testbed project included provision for the inevitable removal and relocation of some of the 

stations due to the construction on I-94 that began in August of 2017. The goal of relocating stations 

was to simply change the area of coverage, without losing any capabilities. With cooperation from the 

project contractors, MTO was able to keep stations running right up until they would be in the way of 

the excavators. Figure 2.1shows the original Testbed and areas of camera and radar coverage. Figure 2.2 

shows the Testbed after stations were retrieved and relocated. 

 

Figure 2.1 Original Testbed site showing radar sites (red dots), radar coverage (outlined in red), rooftop stations 

(yellow dots) and camera coverage (outlined in green). 
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Figure 2.2 New testbed site showing radar sites (red dots), Wavetronix sites (blue dots), radar coverage (red 

outlines), rooftop stations (yellow dots), and a future MnDOT station (white dot). 

As shown in Figure 2.2, both the 3rd Ave station and Portland Ave stations were retrieved because of the 

construction. Using parts from those stations with some refurbishment and rebuilding, new stations 

were deployed at Hiawatha and on the I-94 median just east of the I-35 junction. In addition to the 

layout at the time of writing, one additional future MnDOT station is planned for east of I-35 North. 

The Hiawatha station consists of a solar pole moved due to construction on I-94. While a contracting 

company moved the pole itself, MTO staff rented a bucket truck and re-assembled the station on site. 

Figure 2.3 shows the pole after being assembled, with bucket truck still in view. Figure 2.4 shows a 

closer view of the pole’s radar, camera, Wavetronix, and solar panels. (This shows the westward facing 

radar. There is an identical radar facing east on the opposite side of the pole, not shown.) Figure 2.5 

shows the roadway views on either side of the Hiawatha station. 
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Figure 2.3 Hiawatha station being assembled. 
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Figure 2.4 Hiawatha station closeup, with components labeled. 
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(a) 

 
(b) 

Figure 2.5 View from Hiawatha station, looking east (a) and west (b) (bucket arm from assembly in view). 

For illustration, Figure 2.6 shows the rooftop stations which are mounted and connected to power. 

Figure 2.7 shows MTO engineer Gordon Parikh working on the Augustana station. 
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Figure 2.6 Rooftop stations (a)-(b) along 3rd , (c) Cedar Ave, (d) 3rd Ave  and (e) Augustana 

(a) (c) (b) 

(d) (e) 



Figure 2.7 MTO engineer Gordon Parikh repairing the Augustana station 
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Figure 2.8 shows the retrieval of the Park Ave sensor. Examining the background shows the sensors 

really were in place right up until the construction reached them.  
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Figure 2.8 Retrieval of the Park Ave Sensor 
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Figure 2.9 shows the trailer station being set up. 

 

Figure 2.9 Deployment of the TH 52 trailer. 

A day was spent examining a potential other new site on 7th Street South, as MnDOT was planning to put 

up a station of their own. Figure 2.10 shows the planned MTO site. 
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Figure 2.10 Potential site on 7th St South. 

MnDOT ultimately decided against putting infrastructure there, so MTO did not add a station. 

2.3 SENSING, SURVEILLANCE AND COMMUNICATION EXPANSION 

As mentioned in Section 2.2, the Hiawatha Ave station was deployed with a new, upgraded radar station 

called Wavetronix. Wavetronix can capture more than 64 unique simultaneous objects, which the Type 

29 and Type 30 radars along the original Testbed maxed out at. Wavetronix also has a longer range; 

depending on the style of Wavetronix, anywhere from 6 ft to 600 ft. These stations are using Wavetronix 

SmartSENSOR HD, which has an average range of 250 ft. Currently, the Hiawatha station is not close 

enough to provide continuous coverage with the corridor radars. Wavetronix also detects the entire 

roadway approach, rather than lane differentiated data. Switching to Wavetronix captures higher 

resolution data and will make future applications like Queue Warning easier to implement than Type 29 

or Type 30 radar. Figure 2.11 shows a close-up of the Wavetronix sensor at Hiawatha Ave. 
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Figure 2.11 Close-up of Wavetronix sensor mounted at Hiawatha Ave. 

In addition to the Hiawatha Ave station, MTO is now able to access a Wavetronix radar owned by 

MnDOT located on I-94 East between Portland and Park Avenues. The additional planned station east of 

I-35 North will have Wavetronix capacity as well. 

Cellular communication has been implemented as a backup communication to the stations, and a 

secondary way to power cycle and reset the station radio in case of malfunction. 
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CHAPTER 3:  SOFTWARE UPGRADES AND MAINTENANCE 

In the Testbed layout, both video footage from camera stations and radar sensors collected data. The 

data was transmitted along a wireless communication network, utilizing existing rooftop nodes in the 

MTO’s I-94 Field Lab. Figure 3.1below shows how the Roadside Stations (in the original configuration, 

but the system remains true for the new geometry of the Testbed) are able to transmit data back to the 

MTO.  

 

Figure 3.1 Field data retrieval communication system 

Before discussing software upgrades and maintenance, it is important to understand the system 

architecture of the MTO’s database, which allows access to historical and near-real-time data critical to 

the development of software discussed in Section 3.4 below. 

3.1 DATABASE STORAGE PROCESS 

Once the data arrives back at the MTO, generally within one second, it is stored in a PostgreSQL 

database in real time. This database also contains all historical data from the sensors. The data is saved 

exactly as it is output by the sensor driver without modification to preserve the original state, allowing 

further processing to be done without changing the raw data. In addition to the raw sensor data, the 

database also contains historical and current position and orientation data for each of the sensors, 

providing an automatic means for combining data from multiple sensors into a single reference frame. 
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Finally, the database contains lane definitions for the corridor in the reference form of the sensors, 

allowing target data to be placed into a lane for analysis. 

Because single sensor will produce several million target measurements in a single day, data from the 

sensors is split into individual tables for each date to reduce the maximum query time. Data is organized 

into three tables for each date to provide different levels of resolution to analyze the data. At the 

highest resolution available, in the “trajectories_<date>” table, each record consists of a single target 

measurement, with an X and Y position and velocity value for each target at each point in time. One 

level further out, in the “objects_<date>” table, each record consists of a single target as viewed by one 

sensor over its entire life, containing information like the time of its first and last measurements, the 

estimated length of the target, and its average speed. Finally, in the “frames_<date>” table, information 

about the sensor frames that were decoded is provided, including the message count from the sensor 

and the number of targets observed during that instant in time (up to 64). Together, these tables 

provide a complete picture of the data read from the sensor while reducing the amount of redundant 

information stored by the database. A diagram showing these tables and their relationships with each 

other is shown in Figure 3.2. 

 

Figure 3.2 Database diagram depicting schema of trajectory data from sensors. 

In addition to the data tables, there is another table containing both historical and current sensor 

position and orientation information. In this table, each record contains the sensor ID, the latitude, and 

longitude of the sensor, the X and Y coordinates of the sensor relative to the first (most-downstream) 

sensor in the network, and the start and end time for which this configuration is valid. For the current 

configuration, the end time is left blank to indicate that it is still in place. Additionally, the direction of 
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the sensor (upstream or downstream) is also included, since it is necessary to understand the coordinate 

system of the sensor relative to the others; while the sensors contain their own orientation 

configuration that is used to translate ranges and angles into XY coordinates internally, the direction 

relative to moving traffic is still needed. 

The table containing lane information uses an integer ID for each lane, with lane 0 starting at the right-

most edge of the road. Lanes are also given a name and designated as either a main or auxiliary lane, as 

one of the lanes in the corridor exits midway through the sensor installation. The geometry of the lanes 

is indicated by a spline representing one edge of the lane along with a lane width. This allows targets to 

be sorted into a lane at each point in time by measuring their distance from the spline and determining 

if it is within the lane, based on the lane width. Lanes are also defined for a period of time, which allows 

the system to accommodate changes in road geometry that would occur due to construction. This 

configuration is utilized by the visualization tools developed during this project. 

To simplify the use of the sensor position/orientation table and lane information table for adding 

information to raw sensor data, a number of SQL functions are also included in the database. These 

functions use the sensor positions/orientations to transform target coordinates into a global reference 

frame that is uniform across the network of sensors and use the lane information to assign a lane to 

each target at each point in time based on that translated position. This allows users to merge the data 

from multiple sensors and add this lane information in a single query without having to worry about the 

details of where the sensors or lanes were located at any particular point in time. 

3.1.1 Inter-Process Communication for Exchanging Data 

In addition to the PostgreSQL database, data is routed through a propriety Inter-Process Communication 

(IPC) system, meant to decode and share sensor data for time-critical safety applications. The data fields 

used for radar data, along with their data types, are listed in Table 3.1. These fields are used by software 

applications to produce visualizations of the data, discussed further in Section 3.4  

Table 3.1 Sensor data fields available in IPC data 

Field Name Data Type Description 

time Double-precision float Unix timestamp with microsecond resolution 

count Unsigned integer Cycle count for the radar 

status Integer Status indicator 

targets Integer Number of targets in message (up to 64) 

id[64] (Array) Unsigned short integer Array to hold ID of each target 
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x[64] (Array) Float Array to hold X position of each target 

y[64] (Array) Float Array to hold Y position of each target 

vx[64] (Array) Float Array to hold X component of velocity of each target 

vy[64] (Array) Float Array to hold Y component of velocity of each target 

relays[16] (Array) Boolean Array to hold status of relay triggers 

By abstracting sensor data in this way, the IPC system facilitates quicker development of applications 

using the data, allows multiple applications to use that data without the potential to interfere with one 

another, and provides a number of tools to extend the functionality of the system without requiring 

additional development. While the driver application itself only runs in real-time, making applications 

responsible for buffering data themselves, the IPC framework comes with utilities for saving data into a 

binary file and replaying it later. This feature is useful for development, testing, and debugging in that it 

allows applications to use sensor data without requiring an actual sensor thereby allowing specific 

conditions to be recreated without complex testing setups.  

Figure 3.3 below summarizes the system architecture as a flowchart, for reference. 
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Figure 3.3 Data collection system architecture 

All maintenance and upgrades were performed utilizing this system architecture. 

3.2 SYSTEM AND DATA SECURITY 

The MTO, and by extent the Testbed, is the target of frequent hacking attacks. In 2017 alone, the MTO 

had to upgrade the database server as well as some of the radio firmware because security flaws were 

exploited; the University of MN IT Services cut communications until the breach was repaired. During 

the maintenance period, the current software infrastructure of the station computers and MTO 

database were inspected and upgraded as necessary to ensure system security. 

The upgrades done regarding this project have to do with the creation of tools to view and catalog radar 

data. Most significant of these tools is a space-time diagram creator that is configured to work with the 

database warehousing the aforementioned data. 

When deployed, all internet-connected CV testbed data collection devices are configured to only use 

and communicate with computers on the MTO’s subnet. For remote access, these devices can be 

communicated with through the MTO’s virtual private network. 
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Internet access for CV testbed data collection devices is provided through point to point and point to 

multipoint radios that broadcast through a fiber optic network access point. This network access point is 

provided by the University of Minnesota, the same provider used by the MTO. 

3.3 DEVELOPMENT OF SYSTEM API 

Under the original project, a set of Python tools were developed to read the database data under a 

number of circumstances and perform some of the post-processing that would be required by most 

applications. These tools are optimized to work in real-time (or simulated real-time), reading data from 

the database in a separate process to make it available to applications without making the main process 

wait for the relatively slow query operations. They also abstract the process of reading data from the 

database, instead providing access to the data via a virtual sensor object that translates raw data into 

objects with an intuitive application-programming interface. This allows application developers to write 

applications that use sensor data without needing to write queries for reading the data themselves. 

These Python tools were upgraded to Python 3 during the maintenance period and used during the 

development of visualizing software. 

3.4 DEVELOPMENT OF DATA FILTERING AND DATA MINING APPLICATIONS 

As discussed in Section 3.1  the CV Testbed captures and saves vehicle trajectories in a raw, sensor-by-

sensor format. This was adequate for the scope of the original project. Going forward, many CV 

applications such as BSM Emulation will require the production of seamless trajectories as well as filling 

gaps in the records due to sensing issues, and elimination of duplicate and erroneous data.  

For both the IPC and database interfaces, the first applications that were developed to demonstrate the 

functionality were visualizers. These are simple, graphical programs that display data from multiple 

sensors in a plan view, allowing users to see the data that is collected from the radar in an intuitive way. 

The programs show that sensors were either working or not during any selected time periods. The IPC-

based viewer is very rudimentary, only combining the data from multiple sensors and compensating for 

the position and orientation of sensors. 

3.4.1 IPC Visualizer 

The visualizer is a program that displays the most recent sensor measurements by reading information 

over IPC. It is capable of plotting the positions of the tracked targets and could also be used to plot 

additional information that is generated by the processing algorithm thereby providing a means to verify 

the operation of sensors and any applications. The IPC visualizer has a simple interface, only showing 

targets plotted on a white background and colored by sensor (seen in Figure 3.4). Each target’s position 

is shown as a dot. The differing colors come from different radar sensor data. The boxes around the few 

dots are a result of selection for output. This tool is useful for real-time validation of data. 



 

21 

 

 

Figure 3.4 Screenshot of the IPC visualizer application 

The viewer requires a configuration file to define the locations and orientations of sensors in the field. 

Data from sensors is read from local IPC channels meaning that, for real-time operation, the IPC server 

must be used to synchronize data across the network if it is running on a remote computer and to 

include data from multiple sensors. Because the IPC system also allows data to be recorded and played 

back later, the visualizer can also read data as it is replayed from these files though it is unable to control 

the playback. 

3.4.2 Database Visualizers  

Compared to the IPC visualizer, the database visualizers are much more feature-rich. The first database 

visualizer developed is capable of playing the locations of targets in near-real-time as data is written to 

the database, and also provides the ability to seamlessly replay historical data by simply providing a start 

time in the past. Data is also rendered over an aerial image of the site, which helps provide feedback to 

the user regarding the operation of the sensors (seen in Figure 3.5). It is designed for smooth playback 

of data, so it will occasionally pause to buffer data but this provides a more visually-appealing 

experience. In addition to this, the viewer allows the user to pause playback at a particular point in time 

and to record snapshots or video clips of the viewer output. 

 

Figure 3.5 Screenshot of the database visualizer application, with targets and lanes over an aerial image 
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This visualizer requires a configuration file containing sensor positions and orientations but this file 

contains the same information used to adjust target positions in the database and can also be used to 

update this information in the database using a simple tool. Like the database, the visualizer also 

contains definitions of lanes which can be edited by the user using an associated graphical tool, and can 

sort vehicles into lanes as it plays. Targets can be colored either by the sensor that measured that data 

or by the lane that is assigned to them. 

Currently, only the existing configuration file has been implemented for use in visualizing the raw data. 

The configuration file does result in an imperfect visualization at points, where vehicles are duplicated 

or dropped in the programs, or assigned to the wrong lane. Examples of these issues will be shown 

below. Future configurations and algorithms to interpret the raw data can be implemented to reduce 

these issues, once developed. 

Building on the basic IPC and database tools, three new tools were developed to: see what sensors were 

active at any given time, visualize vehicle trajectories, and create space-time diagrams of vehicle travel 

along the Testbed. Full user manuals are available in the Appendices. 

It is critical to note that these tools are based on the original alignment of the Testbed (i.e., before any 

of the disassembly or movement of stations). New configuration files will allow for the new geometry of 

the Testbed to be displayed in the visualizers, in the future.  

3.4.2.1 Sensor Availability 

The first tool is a Matlab-based application used to see what sensors were functioning at any point on a 

given day. The output is shown in Figure 3.6. The Y axis represents the seven sensors, and the X axis is 

time, which can be anywhere from a five-minute period to an entire day. The tool checks each sensor in 

the database on the desired day and time to see if it was recording valid data or not. The resulting heat 

map will look something like Figure 3.6, where a sensor that was functioning is green and any downtime 

is red. 
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Figure 3.6 Sensor availability heat map. 

The full user manual for this tool can be found in APPENDIX A 

Trajectory Plotting User Manual. 

3.4.2.2 Trajectory Plotting 

The next tool is also Matlab based, and pulls vehicle location and velocity data from the database to 

create individual vehicle trajectory graphs. The user must choose which vehicle ID they would like to 

graph, as well as the time and day. The output of all four possible graphs is shown in Figure 3.7. 
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Figure 3.7 The vehicle trajectory plot outputs 

There will be 4 graphs generated when all four checkboxes are marked in the user interface. 
1. Graph of x vs time ({DATE}): The figure drawn are the vehicle’s X distance coordinates in a local 

system relative to the radar versus time. 
2. Graph of vx vs time ({DATE}): The figure drawn are the vehicle’s velocity in the direction of X 

distance coordinates in a local system relative to the radar versus time. 
3. Graph of y vs time ({DATE}): The figure drawn are the vehicle’s Y distance coordinates in a local 

system relative to the radar versus time. 
4. Graph of vy vs time ({DATE}): The figure drawn are the vehicle’s velocity in the direction of Y 

distance coordinates in a local system relative to the radar versus time. 
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Figure 3.8 shows a more zoomed in graph of a vehicle’s velocity in X relative to the radar versus time. 

The time is shown in a UNIX timestamp. 

 

Figure 3.8 A closer look at the output graph of vx vs time 

A full user manual for this software can be found in APPENDIX B 

Trajectory Plotting User Manual. 

3.4.2.3 Graphical Interface 

The most complex program developed during this project, the Graphical Interface utilizes database 

visualization in a variety of ways. When users first boot up the program, they are able to choose 

whether to use the existing configuration file or custom configuration. As mentioned in 3.4.2 , currently 

only the existing configuration file is available for use. Users will be taken to a home screen, as seen in 

Figure 3.9. 
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Figure 3.9 Home screen of the Graphical Interface tool. 

On this home screen, users can see broad sensor availability for a month at a time. Clicking the desired 

day, users will then be able to see what periods of time all the sensors were available and select the 

time frame for the output space-time graph.  

 

Figure 3.10 Sensor availability per hour, and selection of time frame for output. 
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After the user has selected the sensors and time frame they wish to see, they will click plot and wait for 

the program to run (this can take anywhere from a few minutes to hours depending on the amount of 

data being pulled from the database). On completion, the program will display a space-time diagram of 

all vehicle raw data for that time. Figure 3.11 is an example of a time and day where all sensors were 

working. This figure has the right lane selected, but users can opt to select the left or middle lanes as 

well as zoom in to individual trajectories. 

 

Figure 3.11 All sensor space-time diagram example, all sensors and little congestion. 

Figure 3.12 (dynamic) shows a day with significant snowfall, resulting in several sensors not working and 

more congestion on the roadway. 
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Figure 3.12 Snowy day, with some downed sensors and congestion. 

As seen in Figure 3.11 and Figure 3.12, the vehicle trajectories are not continuous. Figure 3.13 breaks 

down what sensor data is being displayed in each portion of the graph. Figure 3.14 shows the sections of 

radar coverage on a map overlay. 
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Figure 3.13 Space-time broken down by sensor. 
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Figure 3.14 Radar (red dots) coverage areas (shaded), with overlaps. 

In Figure 3.13 and Figure 3.14, the vehicles are traveling from east to west and encountering the radar 

coverage in alphabetical order. Site A is data from the region between Chicago Ave and the gantry at 

Park Ave. Site B is from the gantry at Park Ave, covering the section underneath the Park Ave overpass. 

That is why the trajectories in Site B of Figure 3.13 change color – clearly, it is the same vehicle with the 

same trajectory. Site B overlaps with Site C on the west side of the Park Ave overpass. For a limited time, 

targets are duplicated while the vehicles are picked up by two different sensors. Site C extends all the 

way to the Portland Ave overpass and overlaps with Site E. Site D is completely inside Site C, and a small 

part of Site E. There is a small blind spot at the west edge of the Portland Ave overpass, as Site E and Site 

F sensors are looking in opposite directions with no coverage directly between them. Site F is westward 

facing from Portland Ave, and Site G is eastward facing from 3rd Ave. The break between F and G is due 

to the TH65 bridge, where the sensors were placed with as much line of site as possible but still couldn’t 

pick up the space directly under the bridge. 

In addition to overlap caused by radar placement, as mentioned in 3.4.2 the lane configuration file 

sometimes misinterpreted data, leading to duplicate and misaligned vehicles. Figure 3.15 shows one 

such misalignment circled in red; vehicles are shown to have crossed paths, but no other signs of an 

incident appear. If the trajectories crossed like on the roadway, a crash would result, and the 

trajectories would not continue in such an even way. 
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Figure 3.15 Misaligned vehicle due to configuration file. 

In addition to the misaligned vehicle, several duplicate trajectories can be pointed out. These result from 

radar overlap, and the lane configuration algorithm inappropriately placing them on the roadway. Figure 

3.16 shows the same screenshot, but with duplicate trajectories circled. 

 

Figure 3.16 Duplicate trajectories. 

Within the space-time diagram, users can also select specific trajectories that are of interest and export 

the raw data for only those trajectories into an Excel file for further analysis. Figure 3.17 shows a 

zoomed in look at a single trajectory that has been selected for analysis. 
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Figure 3.17 Example selected trajectory. (icons have changed from dots to crosses) 

Table 3.2 shows an example of the output, where “object_ID” is the vehicle ID. This table contains 

position, velocity and trajectory information. 

Table 3.2 Output of selected trajectory, showing time, vehicle ID, sensor ID, position and velocity. 

 

One more functionality the Graphical Interface has is animated database visualization. This builds on the 

database viewer shown in Figure 3.5. From the main page of the software, the user will click “run 

viewer” and input a date and time in YYYYMMDD HH:MM:SS format. On clicking play, an animation of 

the vehicle trajectories will be displayed over a still aerial image of the Testbed. Figure 3.18 shows an 

example day. 

timestampcount object_id sensor_id x y vx vy v (magnitude)length global x global y latitude longitude

0 1.51E+09 3.21E+08 32 7 104.45 -6.72 -26.9 0 26.9 3.2 606.9528 -58.7051 44.96601 -93.2634

1 1.51E+09 3.21E+08 32 7 102.91 -6.78 -26.9 0 26.9 4.4 605.4128 -58.7651 44.966 -93.2634

2 1.51E+09 3.21E+08 32 7 101.12 -6.53 -26.9 0 26.9 5 603.6228 -58.5151 44.96601 -93.2634

3 1.51E+09 3.21E+08 32 7 99.84 -6.21 -26.9 0 26.9 5 602.3428 -58.1951 44.96601 -93.2634

4 1.51E+09 3.21E+08 32 7 98.5 -5.95 -26.9 0 26.9 5 601.0028 -57.9351 44.96601 -93.2634

5 1.51E+09 3.21E+08 32 7 97.22 -5.76 -27 0 27 5 599.7228 -57.7451 44.96601 -93.2634
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Figure 3.18 An animated vehicle trajectory overlay on an aerial image of the Testbed. 

 

The testbed is quite long, so Figure 3.18 is much more compressed than the viewer looks on a screen. The viewer has lane delineations and 

represents different sensor data with different colors as vehicles travel the corridor. 

The full user manual for this software can be found in Appendix C 

Graphical Interface Tool User Manual
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3.4.2.4 Future Software Developments 

As mentioned in 3.4 future Testbed applications such as BSM emulation will require seamless vehicle 

trajectories along the length of the Testbed. Algorithms will need to be developed to knit together 

trajectories based on raw radar data in the database. 

Further, the basic configuration file currently used to assign raw data to a lane will need to be upgraded 

to reduce the number of overlapping, duplicate, and “ghost” vehicles (trajectories that suddenly 

disappear from a sensor and do not seem to reappear on a sensor down the corridor). 
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CHAPTER 4:  OTHER DEVELOPMENTS 

One part of the original proposal, the CV Testbed Dataset, has not been addressed in this report. In 

addition, during the maintenance period, a spontaneous opportunity to send a vehicle through the 

Testbed was provided by the Mechanical Engineering Department at the University of Minnesota.  

Finally, not falling under any specific maintenance or upgrade, a testing system for the MTO’s video 

recording system (streamrecorder) was developed. 

4.1 CV TESTBED DATASET 

In the original maintenance and upgrade proposal, the MTO was to prepare a portion of the existing CV 

Testbed data to conform with the USDOT RDE format. In view of the work that is happening because of 

a new project involving Basic Safety Messages, this dataset task was moved to that project instead. 

4.2 MECHANICAL ENGINEERING ON-BOARD UNIT TEST 

While the Testbed was ongoing, the Mechanical Engineering department at the U of M was working on a 

separate CV project. They were developing a drive train that could be controlled through CV technology, 

given V2V and V2I information. A CV was simulated as being sent through a connected corridor using the 

software VISSIM; during the simulation, the real-world drive train would respond as if receiving V2V and 

V2I information. The experimenter outfitted his own vehicle with an on-board device (OBD), but ran into 

the issue of having no real-world CV environment to test functionality and verify the OBD was 

functioning correctly, and that GPS data used by the OBD was accurate. 

The CV Testbed team was concurrently looking to calibrate the radars along the Testbed. It was 

determined the test vehicle could aid in doing that by using a known target vehicle in conjunction with 

sensor and camera data overlaid on a 3D high-resolution model of the Testbed. 

In conjunction with the CV Testbed team, a course through the Testbed was determined such that the 

vehicle would be able to be identified on camera and in the raw dataset. The experimenter, with the 

OBD activated and identifying marks on his vehicle for the cameras, drove the course many times. Figure 

4.1, Figure 4.2, and Figure 4.3 all show the vehicle on camera, identified by the white stripes on the top 

and rear of the vehicle.  
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Figure 4.1 Test vehicle. Note the markings on the front, top, and rear of vehicle for identification. 

 

Figure 4.2 Test vehicle from a different angle. 
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Figure 4.3 Test vehicle from rooftop station.  

After video footage and data from all sensors were captured of the vehicle, the CV Testbed team went 

through and identified the vehicle ID in all passes. This vehicle ID was entered into the Trajectory 

Plotting tool (see 3.4.2.2 ) to identify the vehicle-specific radar location data and compare it to the GPS 

data gathered by the OBD. Verification of both the radar and OBD data is planned by projecting the 

datasets onto the 3D high resolution map of the Testbed to verify lane accuracy. 

4.3 STREAMRECORDER 

Streamrecorder is a proprietary MTO software developed in 2002, before the initial deployment of the I-

94 Field Lab. It is a way to gather video data on schedule and transport it back to the MTO. The original 

streamrecorder code was developed to ensure data is being recorded properly (through checking on-

board storage for corruption and reporting statistics on how much data has been recorded) and to 

promote system stability through nightly resets. Over the years, upgrades and maintenance to the code 

have occurred; in this project, a testing system to ensure streamrecorder is recording accurately and 

reliably was developed. 

In the Testbed configuration, eight IP cameras distributed across the three rooftops provide constant HD 

video streams of the corridor, captured by a computer on each rooftop. Part of the upgrades to the CV 

Testbed included the development of Python code used to test the streamrecorder used to capture this 

video. The testing system applies a set of unit tests that are run whenever a change is made to the code 

on GitHub. It also applies at set of long-term tests that can be used to identify issues that appear when 

the system runs continuously for long periods of time, as typically occurs in production. The testing 
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system uses a set of unit tests and configuration tests to make sure that the code operates as intended. 

The unit tests provide a quick feedback to make sure developers didn’t make any easily catchable 

mistakes; whereas, the configuration tests take longer and are able to find problems that take longer to 

materialize. 

The automated testing system is in place to trigger the tests after any change is detected in the 

streamrecorder repository. The testing system runs the two sets of the tests described above whenever 

changes are pushed to any branch on GitHub. The first set of tests, consisting of unit tests and testing 

using short video files, takes less time and quickly makes sure there are no major flaws. As it is currently 

configured, this tests two different streams recording files in three-minute intervals, one on a schedule 

and one constantly. The entire test takes approximately five minutes. 

The other set of tests runs for a longer period of time to discover bugs that can only be found after 

streamrecorder has been running for a while. This test records one-hour videos over a period of 24 

hours to match a more typical production environment. 

Together, these tools provide a framework for streamlining development of the streamrecorder project 

without sacrificing reliability. Automated testing allows feature requests or bug fixes to be implemented 

quickly and immediately verified to ensure the changes don’t break existing functionality. This system 

has already allowed for several known bugs to be fixed, along with several improvements to the 

architecture of the code and its usability. Though it is usable in its current form, improvements to the 

system can be made in the future such as: automated notification after tests are run, granular control of 

which tests are applied when changes occur on specific branches in the repository, and automatic 

merging of branches on successful completion of tests. 
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CHAPTER 5:  CONCLUSION 

By maintaining and upgrading both the hardware and software of existing Testbed stations as well as 

moving stations due to construction while maintaining the capacity of the original Testbed, the MTO has 

created a fully functional CV testbed uniquely situated to attract freeway safety-oriented V2I and V2V 

safety application development, implementation, and evaluation projects.  

Future projects planned with the Testbed include: 

 I-94 Queue Warning system refactoring — a reimplementation of the MN Q-WARN system with 

improvements 

o MN-QWARN has been in operation since June 2016 and originally utilized machine 

vision sensors, but since radar data became available, it has been modified to also use 

that data. 

 Basic Safety Message Emulation 

o A project spearheaded by Dr. Levin at the University of Minnesota Twin Cities is using 

data gathered by the Testbed to emulate Basic Safety Messages.  

In addition, the CV Testbed could be used for: 

 Seamless vehicle trajectories and travel time information 

 More OBD testing 

 Safety, security and environmental application testing 

Overall, the CV Testbed represents a stage beyond simulation but not yet the full implementation of CVs 

on the roadway. Given the unique nature of the system deployed in a real-world setting, any CV 

applications requiring interaction with a large number of unconnected vehicles could be tested in this 

facility. It is an important stepping stone for research as CVs start to enter the marketplace. 
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This software is designed to identify and display which sensors were available on a selected date and 
time range during the operation of the I-94 CV Testbed. 
 

A.1 INTRODUCTION 

 
A high-resolution trajectory for each vehicle is calculated by radar stations along the I-94 CV Testbed. Six 
of the seven detectors are on a relatively straight piece of road, while the last one is on a curve. Existing 
configuration parameters needed to be revisited throughout the project as sensors were moved over 
the course of construction. If a sensor went down for any period of time, other sensors were still able to 

collect data with reduced accuracy. Each trajectory is the result of multiple time series. A time series is 
defined as a series of values of a quantity obtained at successive times, often with equal intervals 
between them. 
 
The radars actively collect data at 20 hertz and cover a distance of roughly 300ft. The values collected 
are X and Y distance coordinates in a local system relative to the radar. The speed of the vehicle is 
calculated based on the shift in sinusoidal frequency between the observed and the emitted frequency 
of a wave for a vehicle relative to the radar (Doppler Effect). It is represented as an X and Y coordinate 
set of the vehicles’ time mean speed. If the location data is poor, the speed of the vehicle can still be 
used to create a trajectory. 
 
Each vehicle that the radar senses is assigned with a unique ID ranging from 0 to 63. (This is due to the 
use of Type 29 and Type 30 radar along the Testbed; only 64 unique objects can be tracked by those 
types of radar at any given time.) This can cause problems because sensors will run out of IDs to assign 
vehicles, meaning different vehicles could have the same ID. 
 
A script has been written in Matlab to retrieve the data from the database and generate a figure 
showing the availability of the radars throughout the day. The data is stored in the PostgreSQL database 
at the Minnesota Traffic Observatory under “testsensoravailability”.  
 

A.1.1 Using the Interface 

To make the code user-friendly, a User Interface for the Matlab code SensorAvailability.m has been 
developed and should be activated to begin the plotting process. Figure A.1 shows the layout of the 
User Interface upon activation. 
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Figure A.1 The Matlab Sensor Availability user interface 

 
SensorAvailability.m requires the following arguments: 

1. Date: Input a date in this format, ‘yyyymmdd’. {e.g. ‘20171218’} 
2. Figure Settings 

a. Suppress Figure: On ticking the checkbox, the figure will not pop up. 
b. Export Figure: On ticking the checkbox, the figure generated will be exported and saved 

as a figure file. 
c. Export Image: By ticking the checkbox, the figure generated will be exported and saved 

as a .jpg file. 
d. Export Radar Availability: By ticking the checkbox, the query request from the database 

will be saved as an Excel. 
 
To generate a figure showing the availability of sensor for a day, the user will only need to enter the 
date. In Figure A.1, the number one highlighted in red shows where user should input the date. By 
clicking the “Select Date” button, a calendar User Interface will pop out and user can select a date from 
it as shown in Figure A.2. 
 
After that, the number two highlighted in red shows the optional settings that user can select from, as 
described above under Figure Settings. 
 
The number three highlighted in red shows the logger for the script. Any error encountered will be 
logged into the logger for review. 
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Figure A.2 Calendar User Interface 

After the arguments are filled, press the OK button as shown in Figure A.3 to generate the figure. 
 

 

Figure A.3 The UI, ready to generate the figure. 

Figure A.4 shows the output from SensorAvailability.m. The y-axis represents the individual station 
indexes while the x-axis represents the time throughout the day in thirty minute intervals. If the sensor 
at a particular station is operating at a time, it will be color coded in green. Otherwise, it will be color 
coded in red. Note the small red lines on sensor 1 from 2:00-4:00, and the small line of green at about 
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16:00 for sensors 2, 3, and 4--while the output shows thirty minute increments, the sensor data is 
captured every minute and is represented in full resolution here. 
 

 

Figure A.4 The output showing sensor availability for the selected day in 30 minute intervals 

Users can then zoom in and out of the graph to get the sensor availability data required. 
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This software is designed to identify and display which sensors were available on a selected date and 
time range during the operation of the I-94 CV Testbed. 
 

B.1 INTRODUCTION 

 
A high-resolution trajectory for each vehicle is calculated by radar stations along the I-94 CV Testbed. Six 
of the seven detectors are on a relatively straight piece of road, while the last one is on a curve. Existing 
configuration parameters needed to be revisited throughout the project as sensors were moved over 
the course of construction. If a sensor went down for any period of time, other sensors were still able to 

collect data with reduced accuracy. Each trajectory is the result of multiple time series. A time series is 
defined as a series of values of a quantity obtained at successive times, often with equal intervals 
between them. 
 
The radars actively collect data at 20 hertz and cover a distance of roughly 300ft. The values collected 
are X and Y distance coordinates in a local system relative to the radar. The speed of the vehicle is 
calculated based on the shift in sinusoidal frequency between the observed and the emitted frequency 
of a wave for a vehicle relative to the radar (Doppler Effect). It is represented as an X and Y coordinate 
set of the vehicles’ time mean speed. If the location data is poor, the speed of the vehicle can still be 
used to create a trajectory. 
 
Each vehicle that the radar senses is assigned with a unique ID ranging from 0 to 63. (This is due to the 
use of Type 29 and Type 30 radar along the Testbed; only 64 unique objects can be tracked by those 
types of radar at any given time.) This can cause problems because sensors will run out of IDs to assign 
vehicles, meaning different vehicles could have the same ID. 
 
A script has been written in Matlab to retrieve the data from the database and generate a figure 
showing the availability of the radars throughout the day. The data is stored in the PostgreSQL database 
at the Minnesota Traffic Observatory under “testi94”.  
 

B.1.1 Using the Interface 

To make the code user-friendly, a User Interface for the Matlab code PlotSensorData.m has been 
developed and should be activated to begin the plotting process. Figure B.1 shows the layout of the User 
Interface upon activation. 
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Figure B.1 The Trajectory Plotting User Interface 

PlotSensorData.m requires the following arguments: 

1. Date: Input a date in this format, ‘yyyymmdd’. {e.g. ‘20171218’} 

2. Start_time (optional): Input a time in this format ‘hh:mm:ss’ {e.g. ‘10:00:00} (optional) 

3. End_time (optional): Input a time in this format ‘hh:mm:ss’ {e.g. ‘16:00:00} (optional) 

4. Sensor_id: The id of the sensor in integer type. 

5. Object_id: The id of the object in integer type. 

6. Plot_request: An array with 4 elements that tells Matlab to plot the figure requested. (0 to skip, 

1 to plot.) {e.g. [0 0 1 1] Plot only vx and vy.} 

7. Export Figure (optional): By ticking the checkbox, the figure generated will be exported and save 

as a figure file. 

8. Export Image (optional): By ticking the checkbox, the figure generated will be exported and save 

as a .jpg file. 

To generate figures showing the trajectories for a day, the user must enter the date, object id, and 

sensor id. Shown in Figure A.2, a calendar pop-out will appear when the “Select Date” button is clicked 

to aid the user in inputting a date and time. 
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Figure B.2 Calendar User Interface 

The numbers labeled in Figure B.2 are: 

1. Start time 

2. End time 

3. Specific: when this setting is chosen, 1 and 2 must be filled. This setting tells the program to pull 

a specific time period with a start and end point. 

4. All-day: When this setting is chosen, 1 and 2 can be ignored. This setting retrieves the entire 

day’s data. 

After a date has been chosen, and all required inputs are filled in, the user can click the ok button to 

return to the main interface, which will look like Figure B.3. 
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Figure B.3 The UI after selecting a date and desired time range 

The user must fill in the Sensor ID and Object ID of their target trajectory. After that, desired figures 

must be chosen. The figures can be exported as a figure (.fig) file or a jpeg (.jpeg) file. Once everything is 

filled in, the figures can be generated clicking the OK button. Figure B.4 shows the output of the code.  
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Figure B.4 The vehicle trajectory plot outputs 

 

There will be 4 graphs generated when all four checkboxes are marked in the UI. 

1. Graph of x vs time ({DATE}): The figure drawn are the vehicle’s X distance coordinates in a local 

system relative to the radar versus time. 

2. Graph of vx vs time ({DATE}): The figure drawn are the vehicle’s velocity in the direction of X 

distance coordinates in a local system relative to the radar versus time. 

3. Graph of y vs time ({DATE}): The figure drawn are the vehicle’s Y distance coordinates in a local 

system relative to the radar versus time. 

4. Graph of vy vs time ({DATE}): The figure drawn are the vehicle’s velocity in the direction of Y 

distance coordinates in a local system relative to the radar versus time. 
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NOTE: The time shown is in UNIX timestamp. A tool has been developed to convert the UNIX timestamp 

into a readable form. Figure B.5 shows the output of running the tool on the given dataset. 

 

 

Figure B.5 Data output showing a readable form 

To run the tool: 

1. Click the Data Cursor button shown in Figure B.5 Data output showing a readable form. 

2. Within the white box as shown in Figure 5, right click and then locate “Select Text Update 

Function...” and left click it. 

3. Locate the file name called TipTool_PSD.m. 

4. The Data Cursor will show the value of the data and the time stamp corresponding to it. 

Users can then save the figure for analysis. 
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This software is designed to be a full graphical interface for the PostgreSQL database, including: sensor 
availability heatmapping, trajectory plotting via space-time maps, and animated overlays of vehicle 
trajectories. 
 

C.1 INTRODUCTION 

 
A high-resolution trajectory for each vehicle is calculated by radar stations along the I-94 CV Testbed. Six 
of the seven detectors are on a relatively straight piece of road, while the last one is on a curve. Existing 
configuration parameters needed to be revisited throughout the project as sensors were moved over 
the course of construction. If a sensor went down for any period of time, other sensors were still able to 

collect data with reduced accuracy. Each trajectory is the result of multiple time series. A time series is 
defined as a series of values of a quantity obtained at successive times, often with equal intervals 
between them. 
 
The radars actively collect data at 20 hertz and cover a distance of roughly 300ft. The values collected 
are X and Y distance coordinates in a local system relative to the radar. The speed of the vehicle is 
calculated based on the shift in sinusoidal frequency between the observed and the emitted frequency 
of a wave for a vehicle relative to the radar (Doppler Effect). It is represented as an X and Y coordinate 
set of the vehicles’ time mean speed. If the location data is poor, the speed of the vehicle can still be 
used to create a trajectory. 
 
Each vehicle that the radar senses is assigned with a unique ID ranging from 0 to 63. (This is due to the 
use of Type 29 and Type 30 radar along the Testbed; only 64 unique objects can be tracked by those 
types of radar at any given time.) This can cause problems because sensors will run out of IDs to assign 
vehicles, meaning different vehicles could have the same ID. 
 
A script has been written in Python to retrieve the data from the database and generate various 
graphical interfaces with it. These interfaces include a calendar-style view of available sensors per day, a 
space-time plot of sensor data over a user-selected date and time, capacity to select individual 
trajectories and export them for analysis, a sensor availability heatmap, and an animation of vehicle 
trajectories overlaid on an aerial image of the Testbed.  
 

C.1.1 Using the Interface 

Figure C.1 shows the first page a user will see when opening the Graphical Interface tool. For now, only 
"Use Config and Continue" is a supported feature but "Custom Config" will be implemented to give users 
greater control over data selection. “Custom Config” allows for the current lane assignment algorithm to 
be updated in the future for greater accuracy of data placement, or to adjust for the changing geometry 
of the Testbed due to construction. 
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Figure C.1 The Graphical Interface Tool User Interface 

To continue, users will click “Use Config And Continue”. Figure C.2 shows the main page of the program, 
showing a calendar-like interface of which sensor data is available for each day. Users can select a day of 
their choice to see sensor availability data broken down by hour for that day. 
 

 

Figure C.2 The main page of the program, showing a calendar of available sensors 
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Figure C.3 is an image of sensor availability per hour on the selected date. Available hours are shown on 

a timeline in green, with unavailable hours shown in red. Figure C.3 shows sensors 0 through 6, but all 

sensors are accessible by scrolling down in the program window. Sensors can be added to the space-

time diagram with the “apply” button, which will change to “cancel” when selected as shown in Figure 

C.4. Note “Plot Object” is planned future functionality. 

 

Figure C.3 Sensor Availability per hour on selected date (December 3, 2017) 

Users then can select the desired start and end times of the space-time diagram by moving the “start” 

and “end” sliders along the bottom of the program. Figure C.4 shows an example of all sensors selected 

on December 3, 2017, and the start time of 11:12:01 and end time of 11:23:31 input. 
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Figure C.4 Sensors have been selected and start and end times set by the user. 

Once desired sensors are selected, and start and end times input, users can proceed by clicking 
“Plot”. This tells the program to pull all available sensor data for the selected date and time, 
and create a space-time diagram with it. Depending on the amount of data required, the job may 
take a very short time or the program may need to run overnight. Status of the job can be monitored by 
returning to the main page and clicking “Plotter Job Queue”, which will bring up a status window as 
shown in Figure C.5.  
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Figure C.5 Job Status Window 

One the job is finished, the graph will display as shown in Figure C.6. Users can then enlarge the graph, 
and zoom in and out, as well as select the right, left, middle or auxiliary lane for display. 

 

Figure C.6 The program displaying a completed space-time graph 
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Figure C.7 shows the full-window display of the space time graph. Note, the middle lane is currently 

selected (indicated by the dark grey). The right, left and auxillary lanes can be displayed by clicking the 

appropriate button. 

 

Figure C.7 The enlarged space-time diagram 

From this view, users can perform the following tasks: zoom in, reset the view, move between different 

selected views, pan across the image (when zoomed), configure subplots (adjusts the entire graph 

aspect ratio), and save and export the figure. This menu is shown in Figure C.8. 

 

 

Figure C.8 Figure menu, with options labeled. 

If the user wishes to select a vehicle trajectory (or multiple), they simply click on the desired trajectories 

in the graph. The display will change from dots to crosses, indicating the trajectory is selected, as seen in 

Figure C.9 
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Figure C.9 Selected trajectory. 

Users can then clear (red button) their selections or export the selections’ raw data to a .csv file. If 

export is selected, the program will generate a file similar Table C.1, showing the time, count, vehicle ID, 

sensor ID recording the measurement, position, magnitude vector, and global and local location. 

Table C.1 Output of selected trajectory, showing time, vehicle ID, sensor ID, position and velocity. 

 

One more functionality the Graphical Interface has is animated database visualization. From the main 

page of the software, Figure C.2,  the user will click “run viewer” and input a date and time in 

YYYYMMDD HH:MM:SS format. On clicking play, an animation of the vehicle trajectories will be 

displayed over a still aerial image of the Testbed. Figure C.10 shows an example day. 

timestampcount object_id sensor_id x y vx vy v (magnitude)length global x global y latitude longitude

0 1.51E+09 3.21E+08 32 7 104.45 -6.72 -26.9 0 26.9 3.2 606.9528 -58.7051 44.96601 -93.2634

1 1.51E+09 3.21E+08 32 7 102.91 -6.78 -26.9 0 26.9 4.4 605.4128 -58.7651 44.966 -93.2634

2 1.51E+09 3.21E+08 32 7 101.12 -6.53 -26.9 0 26.9 5 603.6228 -58.5151 44.96601 -93.2634

3 1.51E+09 3.21E+08 32 7 99.84 -6.21 -26.9 0 26.9 5 602.3428 -58.1951 44.96601 -93.2634

4 1.51E+09 3.21E+08 32 7 98.5 -5.95 -26.9 0 26.9 5 601.0028 -57.9351 44.96601 -93.2634

5 1.51E+09 3.21E+08 32 7 97.22 -5.76 -27 0 27 5 599.7228 -57.7451 44.96601 -93.2634
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Figure C.10 Animated vehicle trajectories overlaid on an aerial image of the Testbed. 

The testbed is quite long, so Figure C.10 is much more compressed than the viewer looks on a screen. The viewer has lane delineations and 

represents different sensor data with different colors as vehicles travel the corridor. 

The user must stop the animation using space bar before closing the animation window, to prevent a program crash. 
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